
PIMCoSim: HW/SW Co-Simulator
for Exploring Processing In Memory Architectures

Seongmo An, Jinyoung Shin, Sangho Lee, and Seung Eun Lee∗
Dept. of Electronic Engineering, Seoul National University of Science and Technology

Seoul, Republic of Korea
*seung.lee@seoultech.ac.kr

ABSTRACT
The growing intricacy of PIM architecture, coupled with ex-

tended simulation durations and the constraints of software sim-
ulators, presents challenges for PIM developers. In this paper, we
propose a HW/SW co-simulator for exploring PIM architectures.
The proposed co-simulator allows PIM developers to simulate var-
ious PIM architectures with a configuration file and PIM-specific
instructions. Experimental results demonstrated that the proposed
co-simulator is feasible and time efficient by showing operation
time reduction is about 7.5 times on average.

KEYWORDS
Processing In Memory, co-simulator, time reduction

ACM Reference Format:
Seongmo An, Jinyoung Shin, Sangho Lee, and Seung Eun Lee∗. 2023. PIM-
CoSim: HW/SW Co-Simulator for Exploring Processing In Memory Ar-
chitectures. In ACM Student Research Competition (ACM SRC ’23), October
21–25, 2023, Vienna, Austria. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/XXXXXX

1 INTRODUCTION
The processing in memory (PIM) has been the subject of con-

siderable attention and scholarly inquiry in recent years[5]. The
proposition of diverse PIM architectures has led to a concomitant
rise in the significance of simulation tools[4]. However, the increas-
ing diversity and complexity of PIM architecture necessitate longer
simulation times. Furthermore, debugging hardware is restricted
by software simulators, so that software simulation alone has lim-
itations in verifying hardware operations[1]. Consequently, we
propose PIMCoSim, a HW/SW co-simulator for PIM architectures
that enables the exploration of diverse PIM architectures. We de-
signed an instruction set that supports PIM operations andmade the
processing element (PE) of PIM implemented in hardware receive
the instructions. This allows developers to implement various PIM
architectures on the simulator and assess the hardware attributes.

Related works for PIM simulators are mainly composed of soft-
ware. In the case of PIMSim, it receives the configuration of DRAM,
computing unit and performs simulations for three modes with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’23, October 21–25, 2023, Vienna, Austria
© 2023 Association for Computing Machinery.
ACM ISBN XXXXXXXXXXX. . . $15.00
https://doi.org/10.1145/XXXXXX

trade-offs between speed/accuracy[3]. The Sim2PIM for more flex-
ible simulation of PIM allows for determination of design details
and performance measurement during development, and guaran-
tees independence from the host CPU, enabling faster simulation
by simulating only the PIM[2]. The proposed PIMCoSim receives
configurations for DRAM, SRAM, and PE and PIM-specific 32-bit
application instruction codes for simulations. The co-simulator per-
forms accelerated PIM operations by transmitting instructions to
the hardware-implemented PE. In addition, the arithmetic unit in-
cluded in the PE hardware is flexibly replaceable so that developers
are able to measure the performance of their own PE arithmetic
unit and simulate hardware characteristics.

2 SYSTEM ARCHITECTURE
Figure 1 depicts the overall structure of the proposed co-simulator

system. First, when the utilizer inputs a configuration file for DRAM,
SRAM, and PE into the simulator, the simulator establishes the mod-
els in the PIM library based on the configurations. Next, the utilizer
is able to write the application code with PIM-specific instruc-
tions and feed it into the simulator. The PIM-specific instruction
set consists of commands such as pim_load and pim_store, which
exchange data with the PIM, pim_add, pim_sub, pim_mul, which
perform binary operations, and pim_cp, which allows data to be
copied between PEs. The commands are converted into 32-bit in-
structions in order by the instruction generator and delivered to
the PE hardware via SPI. Each command contains information in-
cluding which PE to utilize and addresses for DRAM and SRAM,
so the utilizer is capable of implementing various PIM structures
by establishing the PIM components through the configuration file
and combining various instructions in the application code.

Figure 1: The overview of the proposed co-simulator system.

https://doi.org/10.1145/XXXXXX
https://doi.org/10.1145/XXXXXX
https://doi.org/10.1145/XXXXXX

PACT ’23, October 21–25, 2023, Vienna, Austria

After the PE hardware receives an instruction, it interprets the
instruction in the decoder. In case of selecting multiple PEs in the
received instruction, the operation is repeated according to the
number of selected PEs. Once the operation is completed, the result
is transmitted to the simulator software via SPI.

When an instruction is completed, the simulator calculates and
records contents such as operation results, simulation time, pre-
dicted operation time, and the number of accesses to DRAM and
SRAM in the result file based on the configuration file. Upon com-
pletion of all instructions, the utilizer is able to examine the result
file.

3 EXPERIMENT
As depicted in Figure 2, the co-simulator was implemented as a

Python program on a Raspberry Pi, while the PE hardware was im-
planted on an FPGA. To verify the feasibility of the co-simulator, we
also developed a software simulator that performs operations of the
PIM-specific instructions. We conducted experiments by inputting
instruction codes that perform LeNet-1 inference operations into
both simulators, inferring a total of 150 MNIST test datasets simul-
taneously, and comparing the inference results. Additionally, we
measured and compared the operation time for various applications
to verify time reduction.

The results of the experiments are presented in Figure 3. The
MNIST inference results indicate that comparable outcomes were
obtained based on the similarity of the accuracy by label between
both simulators, with a discrepancy of about 1.3% in the total accu-
racy rate. The comparison of operation time by application revealed
that the co-simulator was about 12.2 times faster at maximum in
3×3 convolution and about 7.5 times faster on average.

4 CONCLUSION
This paper proposes a HW/SW co-simulator to evaluate various

PIM architectures. Developers are able to simulate their own PIM
architectures with a configuration file and a PIM-specific instruction
set. Experimental results confirm availability and time efficiency of
the co-simulator.

Figure 2: Experimental environments and display of simula-
tion results

Figure 3: Experimental results

ACKNOWLEDGMENTS
This work was supported by Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (2022-0-01013, Development of
DRAM PIM semiconductor technology for enhanced computing
function for edge).

REFERENCES
[1] Yosuke Kurimoto, Yusuke Fukutsuka, Ittetsu Taniguchi, and Hiroyuki Tomiyama.

2013. A hardware/software cosimulator for Network-on-Chip. In 2013 International
SoC Design Conference (ISOCC). 172–175. https://doi.org/10.1109/ISOCC.2013.
6863964

[2] Paulo C. Santos, Bruno E. Forlin, and Luigi Carro. 2021. Sim2PIM: A FastMethod for
Simulating Host Independent & PIM Agnostic Designs. In 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE). 226–231. https://doi.org/10.
23919/DATE51398.2021.9474104

[3] Sheng Xu, Xiaoming Chen, Ying Wang, Yinhe Han, Xuehai Qian, and Xiaowei Li.
2019. PIMSim: A Flexible and Detailed Processing-in-Memory Simulator. IEEE
Computer Architecture Letters 18, 1 (2019), 6–9. https://doi.org/10.1109/LCA.2018.
2885752

[4] Chao Yu, Sihang Liu, and Samira Khan. 2021. MultiPIM: A Detailed and Config-
urable Multi-Stack Processing-In-Memory Simulator. IEEE Computer Architecture
Letters 20, 1 (2021), 54–57. https://doi.org/10.1109/LCA.2021.3061905

[5] Changwu Zhang, Hao Sun, Shuman Li, Yaohua Wang, Haiyan Chen, and Hengzhu
Liu. 2023. A Survey of Memory-Centric Energy Efficient Computer Architecture.
IEEE Transactions on Parallel and Distributed Systems 34, 10 (2023), 2657–2670.
https://doi.org/10.1109/TPDS.2023.3297595

https://doi.org/10.1109/ISOCC.2013.6863964
https://doi.org/10.1109/ISOCC.2013.6863964
https://doi.org/10.23919/DATE51398.2021.9474104
https://doi.org/10.23919/DATE51398.2021.9474104
https://doi.org/10.1109/LCA.2018.2885752
https://doi.org/10.1109/LCA.2018.2885752
https://doi.org/10.1109/LCA.2021.3061905
https://doi.org/10.1109/TPDS.2023.3297595

	Abstract
	1 INTRODUCTION
	2 SYSTEM ARCHITECTURE
	3 EXPERIMENT
	4 CONCLUSION
	Acknowledgments
	References

