23
24
25
26
27
28
29

39
40
41
42
43
44

A Pipelined Multi-Bank GEMM Accelerator for Memory
Bottleneck Mitigation

Anonymous
Anonymous Organization
anonymous(@anonymous.org

Abstract

General Matrix Multiplication (GEMM) is a fundamental operation
in Al and high-performance computing (HPC). However, conven-
tional CPUs and GPUs suffer from severe memory bottlenecks,
which significantly limit utilization of compute resources. This
paper proposes a GEMM accelerator architecture incorporating a
Multi-Bank Memory Crossbar (MBMC). The proposed architecture
connects four GEMM units with on-chip SRAM banks through a
crossbar to enable parallel memory access, while a Cortex-M0 con-
trols data transfers using DMA-driven event control to maximize
overlap between computation and communication. Compared with
a conventional single-bus design, the proposed accelerator reduces
data load cycles by an average of 1.49x and improves throughput
by 1.49x. These results demonstrate the potential of MBMC to
fundamentally mitigate memory bottlenecks and unlock scalable
performance for Al and HPC GEMM accelerators.

Keywords

General Matrix Multiplication (GEMM); Accelerator Architecture;
Memory Bottleneck; Multi-Bank Crossbar; Tiling; Output-Stationary
(OS) Dataflow

1 Introduction

General Matrix Multiplication (GEMM) is a core operation in arti-
ficial intelligence (AI) and high-performance computing (HPC).
However, conventional CPUs and GPUs, bound by the proces-
sor-memory separation inherent to the Von Neumann architecture,
are limited by memory bandwidth. This so-called Von Neumann bot-
tleneck is particularly detrimental to GEMM workloads, which re-
quire repeated access to large datasets. Although prior research has
explored various techniques to alleviate this issue, most efforts have
focused primarily on improving the speed of Multiply-Accumulate
(MAC) operations [2, 3]. For instance, systolic array architectures
employ pipelining to maximize throughput [4, 5]. However, no mat-
ter how fast the compute units become, if the memory subsystem
cannot provide data in time, the compute units inevitably remain
idle. Thus, computation-centric optimizations alone are insufficient
to overcome the fundamental memory access bottleneck.

To address this challenge, this paper proposes a GEMM accelera-
tor architecture based on a Multi-Bank Memory Crossbar (MBMC)
[1, 6]. Unlike conventional designs that only increase compute
parallelism, the proposed architecture alleviates memory loading
bottlenecks, thereby reducing idle compute time and enhancing
overall system throughput. The main contribution of this paper is
the design of a Processing Element (PE) module based on a MBMC,
combined with a lightweight Cortex-M0 controller that dynami-
cally orchestrates GEMM units and the memory subsystem enhance
system-level utilization.

Recatrstor G Do

Memory Bank
(64KByte)

Memory Bank
(64KByte)

Memory Bank
(64KByte)

MBMC(Multi-Bank Memory Crossbar)

p N
¢ »
Watch
LA sl

Systom Cock Doman]

iR

DMA

Gateway
Interface

wie
i
Cortex-M0

AHB to
MBMC

MBMC(Mutti-Bank Memory Crossbar) |

1

1

i

Memory Bank
(64KByte)

Memory Bank
(64KByte)

Memory Bank
(64KByte)

Acoelrsto Clock Domsin

PE Architecture

Multi-Units Architecture

Figure 1: The System Architecture of the Processing Element

2 System Architecture

2.1 Processing Element Overview

As shown in Figure 1, each PE integrates four GEMM units, a Arm
Cortex-MO, three on-chip SRAM banks, and an MBMC intercon-
nect. Unlike conventional static control, the Cortex-M0 dynamically
configures tiling parameters and data transfer schedules based on
workload size and memory constraints. It issues optimized DMA
commands, handles completion interrupts, and adjusts schedules to
maximize overlap between computation and communication. This
event-driven approach reduces unnecessary CPU intervention, im-
proves energy efficiency, and enables intelligent parallelism across
the system.

2.2 General Matrix Multiplication Unit

The GEMM unit implements a 4-stage pipelined MAC unit. Each
MAC engine consists of six 8-bit multipliers and seven 32-bit accu-
mulators, with eight such engines operating in parallel to produce a
2x4 output tile per cycle. To scale to AI/HPC workloads, four GEMM
units are instantiated per PE. Data are loaded from on-chip SRAM
banks into local buffers, which cache frequently reused operands
and sustain the compute pipeline.

Matrix multiplication follows three nested loops over tokens
(TKN), input channels (CI), and output channels (CO). All loops are
tiled to maximize data locality. An Output-Stationary (OS) dataflow
is adopted, storing partial sums locally to reduce intermediate mem-
ory traffic (Figure 2). Tiling ensures that data resides longer in local
buffers, reducing off-chip access latency.

2.3 Multi-Bank Memory Crossbar

The central innovation is the MBMC interconnect module. In con-
ventional single-bus architectures, four GEMM units must sequen-
tially load operands, resulting in load latency proportional to the

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

P In pt?g?)lsljmn
——
e =————| Notation | Explanation
lnl;:::l;lt 60, 61 }WN TKN Row number of Input matrix
cr Column number of Tnput matrix
co Column number of Output matrix
@2, ™ Parallelism factor along sequence length
cIp Parallelism factor along input matrix
me;f cor Parallelism factor along output matrix
<qp Output Column T Trip count on sequence length: TT = TKN / TP
o { cr Trip count on input channels: CIT = CI/ CIP
cot Trip count on output channels: COT = CO / COP
GO, G2 G1,G3 BTKN Tiling factor along batch or token grouping

BCO Block tiling factor along output channel dimension
BROW Block index in row direction
BCOL Block index in column direction

[
BCO —
QP BCOL

TP e

GO G1 BTKN

BROW
G2 G3
G2 G3

Figure 2: The notations of tiled matrix multiplication

[—
BCO

number of units. In contrast, MBMC allows each GEMM to concur-
rently access distinct SRAM banks, effectively parallelizing memory
loads. This reduces load latency by up to 4x in theory, enabling ear-
lier compute initiation and higher throughput. Arbitration among
concurrent requests is handled by round-robin logic, ensuring fair-
ness and preventing starvation.

3 Experiment

The proposed design was implemented in Verilog RTL and evalu-
ated using Synopsys VCS at 200 MHz with identical SRAM timing
models across all comparisons. Each architecture consists of four
GEMM units and three 64-KB on-chip SRAM banks. Benchmarks
included various matrix sizes (TKNxCI, CIxCO), with measure-
ments of total cycles, data load cycles, and compute cycles. Tiling
parameters were drawn from 149 candidate sets representative of
real Al workloads and memory constraints, narrowed to 40 unique
cases after deduplication by operation count (CIxCOxTKN). From
these, throughput and utilization were derived.

Across workloads, MBMC significantly reduced GEMM idle cy-
cles compared to the single-bus baseline. As matrix sizes grew, the

s o

Baseline

| I | |‘ ‘ | ‘||‘ |‘|
23

1 456 7 8 910111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Utilization (%)
P R
aEBREgREL e

Matrix Size Combination (TKNxCI, CIxCO)

Figure 3: Variation in GEMM idle-cycle ratios with increasing
matrix dimensions

Anonymous

30 -

N Baseline
=7 = MBMC
024
221
Qs
215
=
Eab
=3
£ 9
=

6

3

123456 7 8 91011121314151617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Matrix Size Combination (TKNxCI, CIxCO)

Figure 4: Comparative throughput analysis across diverse
matrix-dimension combinations

single-bus design exhibited sharp increases in idle time due to se-
quential load conflicts, while MBMC sustained high utilization by
enabling parallel bank accesses. For example, in workload (TKN=64,
CI=64, CO=64), idle cycles dropped from 5936 (single bus) to 2968
(MBMC). On average, MBMC reduced idle cycles by 1.49x. Figure 3
summarizes idle cycle ratios across workloads, highlighting ability
of MBMC to alleviate memory bottlenecks.

The performance results confirm that MBMC consistently out-
performed the single-bus baseline. By reducing load latency, MBMC
shortened execution time and advanced compute start times. For
instance, in workload (TKN=64, CI=64, CO=64), throughput im-
proved from 7.12 GMAC/s (single bus) to 11.94 GMAC/s (MBMC),
yielding a 1.68% gain. Across 40 cases, MBMC achieved an average
throughput improvement of over 1.49x. Figure 4 presents through-
put comparisons across workloads, demonstrating the consistent
performance benefits of MBMC.

4 Conclusion

This paper presented a GEMM accelerator architecture incorporat-
ing a MBMC to address the memory bottleneck inherent in GEMM
workloads. By enabling parallel access to multiple SRAM banks and
coupling this with event-driven scheduling by a Cortex-Mo, the
proposed design minimized idle cycles and maximized compute uti-
lization. Simulation results confirmed significant reductions in idle
time and throughput improvements compared to a conventional
single-bus baseline. This study demonstrates a structural solution
to fundamental bottleneck of matrix multiplication operation and
provides a foundation for future extensions, including scaling to
multiple PEs and compiler-driven optimizations for large-scale Al
and HPC deployments.

References

[1] Melvin E. Conway. 1963. A multiprocessor system design. In Proceedings of the
November 12-14, 1963, Fall Joint Computer Conference (Las Vegas, Nevada) (AFIPS
’63 (Fall)). Association for Computing Machinery, New York, NY, USA, 139-146.
doi:10.1145/1463822.1463838

[2] Cong Guo, Chiyue Wei, Jiaming Tang, Bowen Duan, Song Han, Hai Li, and
Yiran Chen. 2025. Transitive Array: An Efficient GEMM Accelerator with Result
Reuse. In Proceedings of the 52nd Annual International Symposium on Computer
Architecture (ISCA °25). Association for Computing Machinery, New York, NY,
USA, 990-1004. doi:10.1145/3695053.3731043

[3] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 58-70. doi:10.1109/HPCA47549.2020.00015

175

1

3

6

1

3

7

1

<}

8

1

3

9

1

3

0

1

3

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

https://doi.org/10.1145/1463822.1463838
https://doi.org/10.1145/3695053.3731043
https://doi.org/10.1109/HPCA47549.2020.00015

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

261
262
263
264
265
266
267
268

270
271
272
273
274
275
276
277

279
280
281
282
283
284
285
286
287
288
289

290

A Pipelined Multi-Bank GEMM Accelerator for Memory Bottleneck Mitigation

[4]

[5]

Md Mizanur Rahaman Nayan, Ritik Raj, Gouse Basha Shaik, Tushar Krishna, and
Azad] Naeemi. 2025. Axon: A Novel Systolic Array Architecture for Improved

Run Time and Energy Efficient GeMM and Conv Operation with On-Chip im2col.

In 2025 Design, Automation Test in Europe Conference (DATE). 1-7. doi:10.23919/
DATE64628.2025.10992860

Mohammadreza Soltaniyeh, Richard P. Martin, and Santosh Nagarakatte. 2022.

An Accelerator for Sparse Convolutional Neural Networks Leveraging Systolic

General Matrix-matrix Multiplication. ACM Trans. Archit. Code Optim. 19, 3,
Article 42 (May 2022), 26 pages. doi:10.1145/3532863

Shouyi Yin, Xianqing Yao, Tianyi Lu, Dajiang Liu, Jiangyuan Gu, Leibo Liu, and
Shaojun Wei. 2017. Conflict-Free Loop Mapping for Coarse-Grained Reconfig-
urable Architecture with Multi-Bank Memory. IEEE Transactions on Parallel and
Distributed Systems 28, 9 (2017), 2471-2485. doi:10.1109/TPDS.2017.2682241

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

337
338
339
340
341
342
343
344
345
346
347
348

https://doi.org/10.23919/DATE64628.2025.10992860
https://doi.org/10.23919/DATE64628.2025.10992860
https://doi.org/10.1145/3532863
https://doi.org/10.1109/TPDS.2017.2682241

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Processing Element Overview
	2.2 General Matrix Multiplication Unit
	2.3 Multi-Bank Memory Crossbar

	3 Experiment
	4 Conclusion
	References

