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Abstract

General Matrix Multiplication (GEMM) is a fundamental operation
in Al and high-performance computing (HPC). However, conven-
tional CPUs and GPUs suffer from severe memory bottlenecks,
which significantly limit utilization of compute resources. This
paper proposes a GEMM accelerator architecture incorporating a
Multi-Bank Memory Crossbar (MBMC). The proposed architecture
connects four GEMM units with on-chip SRAM banks through a
crossbar to enable parallel memory access, while a Cortex-M0 con-
trols data transfers using DMA-driven event control to maximize
overlap between computation and communication. Compared with
a conventional single-bus design, the proposed accelerator reduces
data load cycles by an average of 1.49x and improves throughput
by 1.49x. These results demonstrate the potential of MBMC to
fundamentally mitigate memory bottlenecks and unlock scalable
performance for Al and HPC GEMM accelerators.
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1 Introduction

General Matrix Multiplication (GEMM) is a core operation in arti-
ficial intelligence (AI) and high-performance computing (HPC).
However, conventional CPUs and GPUs, bound by the proces-
sor-memory separation inherent to the Von Neumann architecture,
are limited by memory bandwidth. This so-called Von Neumann bot-
tleneck is particularly detrimental to GEMM workloads, which re-
quire repeated access to large datasets. Although prior research has
explored various techniques to alleviate this issue, most efforts have
focused primarily on improving the speed of Multiply-Accumulate
(MAC) operations [2, 3]. For instance, systolic array architectures
employ pipelining to maximize throughput [4, 5]. However, no mat-
ter how fast the compute units become, if the memory subsystem
cannot provide data in time, the compute units inevitably remain
idle. Thus, computation-centric optimizations alone are insufficient
to overcome the fundamental memory access bottleneck.

To address this challenge, this paper proposes a GEMM accelera-
tor architecture based on a Multi-Bank Memory Crossbar (MBMC)
[1, 6]. Unlike conventional designs that only increase compute
parallelism, the proposed architecture alleviates memory loading
bottlenecks, thereby reducing idle compute time and enhancing
overall system throughput. The main contribution of this paper is
the design of a Processing Element (PE) module based on a MBMC,
combined with a lightweight Cortex-M0 controller that dynami-
cally orchestrates GEMM units and the memory subsystem enhance
system-level utilization.
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Figure 1: The System Architecture of the Processing Element

2 System Architecture

2.1 Processing Element Overview

As shown in Figure 1, each PE integrates four GEMM units, a Arm
Cortex-MO, three on-chip SRAM banks, and an MBMC intercon-
nect. Unlike conventional static control, the Cortex-M0 dynamically
configures tiling parameters and data transfer schedules based on
workload size and memory constraints. It issues optimized DMA
commands, handles completion interrupts, and adjusts schedules to
maximize overlap between computation and communication. This
event-driven approach reduces unnecessary CPU intervention, im-
proves energy efficiency, and enables intelligent parallelism across
the system.

2.2 General Matrix Multiplication Unit

The GEMM unit implements a 4-stage pipelined MAC unit. Each
MAC engine consists of six 8-bit multipliers and seven 32-bit accu-
mulators, with eight such engines operating in parallel to produce a
2x4 output tile per cycle. To scale to AI/HPC workloads, four GEMM
units are instantiated per PE. Data are loaded from on-chip SRAM
banks into local buffers, which cache frequently reused operands
and sustain the compute pipeline.

Matrix multiplication follows three nested loops over tokens
(TKN), input channels (CI), and output channels (CO). All loops are
tiled to maximize data locality. An Output-Stationary (OS) dataflow
is adopted, storing partial sums locally to reduce intermediate mem-
ory traffic (Figure 2). Tiling ensures that data resides longer in local
buffers, reducing off-chip access latency.

2.3 Multi-Bank Memory Crossbar

The central innovation is the MBMC interconnect module. In con-
ventional single-bus architectures, four GEMM units must sequen-
tially load operands, resulting in load latency proportional to the
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Figure 2: The notations of tiled matrix multiplication
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number of units. In contrast, MBMC allows each GEMM to concur-
rently access distinct SRAM banks, effectively parallelizing memory
loads. This reduces load latency by up to 4x in theory, enabling ear-
lier compute initiation and higher throughput. Arbitration among
concurrent requests is handled by round-robin logic, ensuring fair-
ness and preventing starvation.

3 Experiment

The proposed design was implemented in Verilog RTL and evalu-
ated using Synopsys VCS at 200 MHz with identical SRAM timing
models across all comparisons. Each architecture consists of four
GEMM units and three 64-KB on-chip SRAM banks. Benchmarks
included various matrix sizes (TKNxCI, CIxCO), with measure-
ments of total cycles, data load cycles, and compute cycles. Tiling
parameters were drawn from 149 candidate sets representative of
real Al workloads and memory constraints, narrowed to 40 unique
cases after deduplication by operation count (CIxCOxTKN). From
these, throughput and utilization were derived.

Across workloads, MBMC significantly reduced GEMM idle cy-
cles compared to the single-bus baseline. As matrix sizes grew, the

s o

Baseline

| I | |‘ ‘ | ‘||‘ |‘|
23

1 456 7 8 910111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Utilization (%)
P R
aEBREgREL e

Matrix Size Combination (TKNxCI, CIxCO)

Figure 3: Variation in GEMM idle-cycle ratios with increasing
matrix dimensions
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Figure 4: Comparative throughput analysis across diverse
matrix-dimension combinations

single-bus design exhibited sharp increases in idle time due to se-
quential load conflicts, while MBMC sustained high utilization by
enabling parallel bank accesses. For example, in workload (TKN=64,
CI=64, CO=64), idle cycles dropped from 5936 (single bus) to 2968
(MBMC). On average, MBMC reduced idle cycles by 1.49x. Figure 3
summarizes idle cycle ratios across workloads, highlighting ability
of MBMC to alleviate memory bottlenecks.

The performance results confirm that MBMC consistently out-
performed the single-bus baseline. By reducing load latency, MBMC
shortened execution time and advanced compute start times. For
instance, in workload (TKN=64, CI=64, CO=64), throughput im-
proved from 7.12 GMAC/s (single bus) to 11.94 GMAC/s (MBMC),
yielding a 1.68% gain. Across 40 cases, MBMC achieved an average
throughput improvement of over 1.49x. Figure 4 presents through-
put comparisons across workloads, demonstrating the consistent
performance benefits of MBMC.

4 Conclusion

This paper presented a GEMM accelerator architecture incorporat-
ing a MBMC to address the memory bottleneck inherent in GEMM
workloads. By enabling parallel access to multiple SRAM banks and
coupling this with event-driven scheduling by a Cortex-Mo, the
proposed design minimized idle cycles and maximized compute uti-
lization. Simulation results confirmed significant reductions in idle
time and throughput improvements compared to a conventional
single-bus baseline. This study demonstrates a structural solution
to fundamental bottleneck of matrix multiplication operation and
provides a foundation for future extensions, including scaling to
multiple PEs and compiler-driven optimizations for large-scale Al
and HPC deployments.
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